
If there is uncertainty on the state of the system, and 
dynamics of the system is perfectly known, uncertainty 
on the state along stable modes decreases over time, 
while uncertainty along unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic 
state that decrease (increase) over time. 

  

  

  

  





Pires et al., Tellus, 1996 ; Lorenz system (1963) 
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Since, after an assimilation has been performed over a period of time, uncertainty is 
likely to be concentrated in modes that have been unstable, it might be useful, at 
least in terms of cost efficiency, to concentrate assimilation in modes that have been 
unstable in the recent past, where uncertainty is likely to be largest. 

Also, presence of residual noise in stable modes can be damageable for analysis and 
subsequent forecast. 

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 
3D-Var) 

Four-dimensional variational assimilation in the unstable subspace (4DVar-
AUS)	



  



5 Trevisan et al., 2010, Lorenz 96 system 
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No explicit  background term (i.  e.,  with  error  covariance  matrix)  in  objective  function  : 
information from past lies in the background to be updated, and in the N perturbations 
which define the subspace in which updating is to be made.	



Values I = 40, 60, 80, correspond respectively to N+ = 13, 19 and 26 positive Lyapunov 
exponents. 

Best performance for N slightly above number  N+ of positive Lyapunov exponents.	
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Iterative Ensemble Kalman Smoother (IEnKS, Bocquet and Sakov, 2014)	



Minimization  performed  at  time  t0,  in  an  appropriately  chosen  reduced 
subspace,  assimilating  observations  performed  between  times  tS  and  tL, 
with t0  ≤  tS  ≤  tL	



   t0  tS	

 	

 	

 tL 

  ı ı ı ı ı ı	



	

 	

 	

 	

 	

 	

 	

    	



	

       control	

 	

 	

 observations	



If  the  dimension  of  the  reduced  subspace  is  small  enough,  gradient  of 
objective function can be computed by finite differences, and approximate 
Hessian can be determined. Once the minimization has been achieved, a 
new  ensemble  of  perturbations  can  be  obtained  by  transport  of  the 
approximate inverse Hessian.	





8 Carrassi et al., 2018 



All schemes that have been presented so far are ‘Gaussian’, in 
the sense that they are more or less empirical and heuristic 
extensions,  to  moderately  non-linear  and  non-Gaussian 
situations, of algorithms which achieve Bayesian estimation 
in linear and Gaussian situations.	



	

 	



	

 Used  not  for  theoretical  reasons,  but  for  purely  pragmatic 
ones. They are the simplest of non simplicist algorithms, and 
they work. 	



  

  

  

  



Exact bayesian estimation ?	



Particle filters	



Predicted ensemble at time t : {xb
l, l = 1, …, L},  each element with its own 

weight (probability) P(xb
l) 	



Observation vector at same time : y = H(x) + ε	



Bayes’ formula	


P(xb

l|y) = P(y|xb
l) P(xb

l) / P(y)   	



Defines updating of weights	
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Bayes’ formula	


P(xb

l|y) ∼ P(y|xb
l) P(xb

l)	



If error ε is independent of all previous data	



	

 	

 y = H(x) + ε	

 ⇒	

 P(y|xb
l) = P[ε = y - H(xb

l)]	



Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	



Observed fact. For large state dimension, ensemble tends to collapse.	
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C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 12 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	



Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	
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Solution.  Resampling.  Remove particles  with  low likelihood, 
and create new particles in regions in state space with high 
likelihood, including using future observations for evolving 
particles between successive analysis times.	



Review  in  van  Leeuwen,  2017,  Annales  de  la  faculté  des 
sciences de Toulouse Mathématiques	



The  Equivalent-Weights  Particle  Filter  (Ades  and  van 
Leeuwen, QJRMS, 2013).	
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Example	


	

 	


	

 Vorticity equation model with stochastic perturbations.	


	

 State-vector dimension ≈ 65,000 
	

 Decorrelation time:  25 timesteps	


	

 One complete noisy model field observed every 50 timesteps	


	

 24 particles.	


	

 Results after 12 analyses	
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€ 



16 van Leeuwen, 2017 



Bayesianity : filters are bayesian (in the limit of 
infinite  ensemble size) 

Possible difficulties : numerical implementation, 
numerical cost   

Particle filters are actively studied (van Leeuwen, 
Morzfeld, …)  

  

  

  

  17 
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has 
gradually extended to many diverse applications, first in climate and environmental science, and then in 
other domains  	



•  Oceanography	


•  Atmospheric chemistry (both troposphere and stratosphere)	


•  Terrestrial biosphere and vegetation cover	


•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	


•  Definition of observing systems (Observing Systems Simulation Experiments)	


•  Planetary atmospheres (Mars, …)	



•  Magnetism (both planetary and stellar)	


•  Plate tectonics	



•  Parameter identification	


•  Validation of models	


•  Economics	



•  Dynamics of Covid-19 pandemic (Evensen et al., 2021) 	



•  Mathematical studies, independently of direct real life applications	


•  …	



It has now become a major tool of numerical environmental science, and beyond	





A few of the (many) remaining problems : 

 Observability (what to observe in order to know what 
we want to know ? Data are noisy, system is 
chaotic !)  

 More accurate identification and quantification of 
errors affecting data particularly the assimilating 
model (will always require independent hypotheses) 

 Assimilation of images 

 Algorithmics (Artificial Intelligence, Machine 
Learning, for instance for identification of sub-grid 
scale processes or observation operators) 

 … 

19 





21 

References on Assimilation 	



Daley, R., 1991, Atmospheric Data Analysis, Cambridge University Press, Cambridge, UK, 457 pp..  

Rodgers, C. D., 2000, Inverse Methods for Atmospheric Sounding: Theory and Practice, World 
Scientific Publishing Co. Ltd, London, UK, 238 pp.. 

Kalnay, E., 2002, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University 
Press, Cambridge, UK, 341 pp..  

Evensen, G., 2009, Data assimilation, The Ensemble Kalman Filter, 2nd ed., Springer, 307 pp. 
  
Asch, M., M. Bocquet and M. Nodet, 2016, Data Assimilation: Methods, Algorithms, and Applications, 

Society for Industrial and Applied Mathematics, ISBN: 9781611974539. 

Ghil, M., and P. Malanotte-Rizzoli, 1991, Data assimilation in meteorology and oceanography, Adv. in 
Geophys., 33, 141-266. 

Talagrand, O., 1997, Assimilation of Observations, an Introduction, J. Meteor. Soc. Japan, 75 (1B, 
Special Issue Data Assimilation in Meteorology and Oceanography: Theory and Practice), 
191-209 

van Leeuwen, P. J., Particle Filters for nonlinear data assimilation in high-dimensional systems, 
Annales de la faculté des sciences de Toulouse Mathématiques, 26 (4). pp. 1051-1085, 2017, 
ISSN 0240-2963 doi: https://doi.org/10.5802/afst.15600  



Thanks !	




