If there is uncertainty on the state of the system, and
dynamics of the system is perfectly known, uncertainty
on the state along stable modes decreases over time,
while uncertainty along unstable modes increases.

Stable (unstable) modes : perturbations to the basic
state that decrease (increase) over time.
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr. dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)



Since, after an assimilation has been performed over a period of time, uncertainty is
likely to be concentrated in modes that have been unstable, it might be useful, at
least in terms of cost efficiency, to concentrate assimilation in modes that have been
unstable in the recent past, where uncertainty is likely to be largest.

Also, presence of residual noise in stable modes can be damageable for analysis and
subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of
3D-Var)

Four-dimensional variational assimilation in the unstable subspace (4D Var-
AUS)
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refer to the error component in the stable subspace eis, ...,

Trevisan et al., 2010, Lorenz 96 system
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: /=40, 60,
80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s
o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Values |/ = 40, 60, 80, correspond respectively to N* = 13, 19 and 26 positive Lyapunov
exponents.

Best performance for N slightly above number N* of positive Lyapunov exponents. 6



Iterative Ensemble Kalman Smoother (IEnKS, Bocquet and Sakov, 2014)

Minimization performed at time f,, in an appropriately chosen reduced

subspace, assimilating observations performed between times 7 and 7,
with7, < 1< ¢,

!

control observations

If the dimension of the reduced subspace is small enough, gradient of
objective function can be computed by finite differences, and approximate
Hessian can be determined. Once the minimization has been achieved, a

new ensemble of perturbations can be obtained by transport of the
approximate inverse Hessian.
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Carrassi et al., 2018 8



All schemes that have been presented so far are ‘Gaussian’, in
the sense that they are more or less empirical and heuristic
extensions, to moderately non-linear and non-Gaussian
situations, of algorithms which achieve Bayesian estimation

in linear and Gaussian situations.

Used not for theoretical reasons, but for purely pragmatic
ones. They are the simplest of non simplicist algorithms, and

they work.



Exact bayesian estimation ?
Particle filters

Predicted ensemble at time 7 : {x*,, /=1, ..., L}, each element with its own
weight (probability) P(x?)

Observation vector at same time : y = H(x) + ¢

Bayes’ formula
P(xb|y) = P(y|xb) P(xb) / P(y)

Defines updating of weights

10



Bayes’ formula
P(x’)|y) ~ P(y]x”) P(x”)

If error ¢ is independent of all previous data
y=Hx)+e = P(ylx?) = Ple=y - H(x")]

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.

11



Behavior of max w*

> N, =103 N, = 10,30,100; 103 realizations

N =10 | average squared error of
200 | posterior mean = 5.5

Loo= 127

0 0.2 04 06 08 1
max WI

C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmodas/Oral/
Snyder.pdf 12



Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present in
areas where conditional probability (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.

13



Solution. Resampling. Remove particles with low likelihood,
and create new particles in regions in state space with high
likelihood, including using future observations for evolving
particles between successive analysis times.

Review 1n van Leeuwen, 2017, Annales de la faculté des
sciences de Toulouse Mathématiques

The Equivalent-Weights Particle Filter (Ades and van
Leeuwen, OJRMS, 2013).

14



Example

Vorticity equation model with stochastic perturbations.
State-vector dimension = 65,000

Decorrelation time: 25 timesteps

One complete noisy model field observed every 50 timesteps
24 particles.

Results after 12 analyses

15
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Figure 5.3. Snap shot of the vorticity field of the truth (right) and the
particle filter mean (left) at time 25. Note the highly chaotic state of
the fields, and the close to perfect tracking.

van Leeuwen, 2017 16



Bayesianity : filters are bayesian (in the limit of
infinite ensemble size)

Possible difficulties : numerical implementation,
numerical cost

Particle filters are actively studied (van Leeuwen,
Morzfeld, ...)

17



Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has
gradually extended to many diverse applications, first in climate and environmental science, and then in
other domains

e Oceanography

e Atmospheric chemistry (both troposphere and stratosphere)

e  Terrestrial biosphere and vegetation cover

e  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
e  Definition of observing systems (Observing Systems Simulation Experiments)

e  Planetary atmospheres (Mars, ...)

e  Magnetism (both planetary and stellar)
e  Plate tectonics

J Parameter identification
. Validation of models
J Economics

*  Dynamics of Covid-19 pandemic (Evensen et al., 2021)

e  Mathematical studies, independently of direct real life applications

It has now become a major tool of numerical environmental science, and beyond

18



A few of the (many) remaining problems :

= Observability (what to observe in order to know what
we want to know ? Data are noisy, system is
chaotic !)

= More accurate identification and quantification of
errors affecting data particularly the assimilating
model (will always require independent hypotheses)

= Assimilation of images

= Algorithmics (Artificial Intelligence, Machine
Learning, for instance for identification of sub-grid
scale processes or observation operators)

19
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