A Brief History of Data Assimilation
It all Started from a Rather Menial Task
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After the well-known (and unsuccessful, but nevertheless very instructive)
attempt by L. F. Richardson in 1922, Numerical Weather Prediction started for good
in the late 40s, at the Institute for Advanced Study in Princeton, under the leadership

of John von Neumann (in a group comprising, among others, people such as J.
Charney, N. A. Phillips, R. Fjortoff and J. Smagorinsky)




Assimilation of observations, as it is known in meteorology and oceanography,
originated from the need of defining initial conditions (ICs) for numerical weather
prediction. That was considered at the start as a minor task, the ‘real’ thing being of
course the forecast itself. Difficulties gradually arose

= Need for defining ICs with appropriate spatial scales = ‘structure functions' (now incorporated in
background error covariance matrices)

= Need for defining ICs in approximate geostrophic balance = ‘initialization’ (now also incorporated in
background error covariance matrices)

= Realization that useful information was present in observations, particularly satellite observations, that were

distributed over time = need to introduce the dynamical model in the process of definition of the ICs. Word
assimilation was coined in 1967-68.

= Satellite observations, in addition to being distributed continuously in time, are ‘indirect’ = need for some
form of ‘inversion’

= Very significant increase of the number of observations to be processed = need for powerful and robust
algorithms
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European Centre for Medium-Range Weather Forecasts (ECMWEF, 2020)
Around 10 million observations are used per 6 h period




Proportion of resources devoted to assimilation 1n

Numerical Weather Prediction has steadily increased over
time. At ECMWEF, about 40% of resources devoted to
operational chain is now devoted to assimilation.



Originally, analysis of meteorological situation was perfomed by an experienced
meteorologist on a chart.

When computers became available, they were used to perform the same task
that was performed by hand. The main advantage was that the procedure was
entirely automated, and could process rapidly a large amount of data. People spoke

of objective analysis, by opposition to subjective analysis performed by individuals.

Principle : apply corrections to a first-guess field, by extrapolating differences
between first guess and observations (Bergthdrssen and Doos, 1955, Cressman,
1959)



One method gained wide acceptance

Optimal Interpolation (OI) (Gandin, 1963)

Observations y; ,j=1,...,p

Estimate of unknown quantity x looked for in the form
xXt=o+ 2]. [a’jyj

a and the f;’s being determined so as to minimize the expected
quadratic estimation error E[(x-x%)?]

Requires the a priori explicit knowledge of first-order (expectations)
and second-order (variances and covariances) statistical moments of all variables.

Expectations of quantities to be estimated make up background (or first-guess) to be

updated by observations.



Each observation comes with its own influence function, or representer (its

statistical covariance with variables to be estimated).

The correction performed on the background is a linear combination of
all representers, with weights depending on values of observations, and on

mutual covariances between observations.



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. :

After N. Gustafsson



Schlatter’s (1975) multivariate covariances

Specified as
multivariate 2-point
functions.

Not easy to ensure
that specified
functions are
actually valid
covariances.

Used in Ol and
related observation-
space methods.

© Crown copyright Met Office Andre'

Fic. 3. Correlations among the variables 7, %, and v based upon the expression u=0.95 exp(—1.24s?)
for height-height correlation and the geostrophic relations. Diagrams centered at 110°W, 35°N, Tick
marks 500 km apart.
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Fig. 4 BSea level pressure and wind forecast corresponding to the central area of
Fig. 1, with plotted surface observations of pressure and wind

(each fleche = 5 m/s).

After A. Lorenc, MWR, 1981
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Fig. 5 As Fig. 4 for the analysis in the data assimilation cycle
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In what is called in practice optimal interpolation, the background, usually
denoted x”, is a recent forecast coming from the past. The associated
covariance matrix that is required by the algorithm is usually taken as a

climatological estimate (or an estimate varying with season, but not on the
current estimate of the flow). It is denoted P? (or simply B).

Optimal interpolation has been abundantly used (and is still in many

applications), and was the standard method of assimilation of
meteorological observations for a number of years.

In later years, the analysis x? has been obtained through minimization of a
scalar objective function. It is then called 3DVar.
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‘Initialization’

Temperton and Williamson,

ECMWEF, 1979
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Surface pressure vs time at 40 ON, a0 "W during
forecasts with new Jacobian, before (solid) and
after (dashed) nonlinear initialization (2 iter-
ations, 5 vertical modes, using horizontal modes
based on old Jacobian).



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWEF, spectral
truncation T21, unit m. After F. Bouttier)
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60°W 0

Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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Need for determining the temporal evolution of the
uncertainty on the state of the system is the major difficulty
in assimilation of meteorological and oceanographical
observations

Two classes of algorithms have been, and are still,
largely used for that purpose

- Kalman Filter, especially in its Ensemble form

- Variational Assimilation
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Purpose of assimilation : reconstruct as accurately as possible the state
of the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

= The observations proper, which vary in nature, resolution and accuracy,
and are distributed more or less regularly in space and time.

» The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
dynamical model.

= ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.
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Both observations and ‘model’ are affected with some uncertainty =
uncertainty on the estimate.

For some reason, uncertainty is conveniently described by
probability distributions (don’t know too well why, but it works; see,
e.g. Jaynes, 2007, Probability Theory: The Logic of Science,
Cambridge University Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of
the system, knowing everything we know (see Tarantola, A., 2005,
Inverse Problem Theory and Methods for Model Parameter

Estimation, SIAM). 8



Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

* solid Earth geophysics
e plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the

Same.
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Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10°10° parameters to be
estimated, p = 4-5.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics
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If errors are additive and Gaussian, Optimal Interpolation achieves
Bayesian estimation.

Bayesian estimation 1s actually impossible in its general theoretical
form in meteorological or oceanographical practice because

It 1s impossible to explicitly describe a probability distribution in a space
with dimension even as low as n = 10°, not to speak of the dimension n =
10°” of present Numerical Weather Prediction models (the curse of
dimensionality).

Probability distribution of errors on data very poorly known (model errors
in particular).
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One has to restrict oneself to a much more modest goal. Two
approaches have been developed

= Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, ...), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

" Produce an ensemble of estimates that are meant to sample the
conditional probability distribution (dimension N = O(10-100)).
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Kalman Filter

= (Observation vector at time k

yo=Hx + ¢ k=0, ...

E(g)=0 ; E(gg") =R, 9,
H, linear

= Evolution equation

X =Mx, + n, k=0, ...

E(n) =0 ; E(nij) =0y ‘Skj
M linear

= F( nkejT) =0 (errors uncorrelated in time)
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At time k, background x”, and associated error covariance matrix P?, known

Analysis step

gain matrix inngvation
( ) \
x4 =x"+ PP HHP H' +R]" (y, - Hx")
P4 =P"-P H![HP H!+R,]'H P

Forecast step
X0 = M x4,
Pt =M P4M"+Q,

Kalman filter (KF, Kalman, 1960, Jones, 1965, Petersen, 1968, Ghil et al.,
1981, ...)

Must be started from some initial estimate (x%,, P%)

In case observation and model errors ¢, and 7, are globally Gaussian, KF
produces at any time k the (Gaussian) pdf for x,, conditioned by all data up to

that time.
24



Equation
P =M P M+ O,

describes temporal evolution, between two observation instants, of

uncertainy on the state of the flow. Much too costly for practical
implementation.
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Two solutions :

o Low-rank filters (Verlaan and Heemink, 1997, Pham et al., 1998, ...)

Use low-rank covariance matrix, restricted to modes in state space on
which it is known, or at least assumed, that a large part of the
uncertainty is concentrated.

o Ensemble filters

Uncertainty is represented, not by a covariance matrix, but by an
ensemble of point estimates in state space that are meant to sample the
conditional probability distribution for the state of the system
(dimension L = O(10-100)).

Ensemble is evolved in time through the full model, which eliminates
any need for linear hypothesis as to the temporal evolution.

Ensemble Kalman Filter (EnKF, Evensen, 1994, Houtekamer and
Mitchell, 1998, ...)
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How to update predicted ensemble with new observations ?

Predicted ensemble at time & : {x*}}, [=1,...,L

Observation vector at same time : y = Hx + ¢
e Gaussian approach

Produce sample of probability distribution for real observed quantity Hx

Yi=y-§
where ¢ 1s distributed according to probability distribution for observation error &.

Then use Kalman formula to produce sample of ‘analysed’ states
x4 =x",+ PP H"[HP’H" + R]" (y,- Hx") , [=1,...,L (2)
where P?is the sample covariance matrix of predicted ensemble {x”;}.

Remark. In case of Gaussian errors, if P? was exact covariance matrix of
background error, (2) would achieve Bayesian estimation, in the sense that {x%}
would be a sample of conditional probability distribution for x, given all data up to
time k.
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But problems

- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in
the fact that gain matrix P> H' [HP’H" + R]'is nonlinear wrt background error matrix P?,
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.

- Spurious correlations appear at large geographical distances. Empirical ‘localization’ (see
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)

- In formula

x* =xb,+ PPH' [HP'H" + R]" (y, - Hx") , I=1,...,L

P’, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that
corrections made on ensemble elements are contained in a subspace with dimension L-1.
Obviously very restrictive if L « p , L « n.
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Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)
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Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

(Meng and Zhang, MWR, 2008)



Size of ensembles ?

Must be fundamentally sufficient to prevent growth of errors
in neutral and unstable modes of the system. Size of
ensembles must be at least as large as the number of those
neutral and unstable modes (typically from a few tens to a
few hundreds for large scale meteorological flow).

Ensemble Kalman Filter exists in many variants and 1s used
for many applications, both in operations and in research.
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Variational Assimilation

* Data
- Background estimate at time 0

xob = X, + gob E( Cob CobT) — POb

- Observations at times k=0, ..., K

Vi = Hx + & E(gg,") = ROy

- Model

Xpat = Mpx+ 1 E(ne’) = Qb k=0, ..., K-1
Errors assumed to be unbiased and uncorrelated in time, H, and M, linear
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Sequence of model states (&, &, ..., S¢) over observation period

Then scalar objective function

J(Eo» E1» +-es Ek)
= (172) (xg? - EDTIPT (xo” - &)
+(1/2) Z kv - Hi& T R [y - Hi Gl
+(172) iy il et - MiEJ Ot (81 - M5
measures misfit between sequence (£, &, ..., &) and data

Purpose of variational assimilation : find sequence (&,, &;, ..., &) which
minimizes 7(&,, &y, ..., §k) (4DVar)
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In linear case, solves the same problem as Kalman Filter. States produced
by both algorithms at the end of the assimilation window are the same. In
addition, if errors are Gaussian, algorithm, like KF, is Bayesian.

Propagates information both forward and backward in time. Is a smoother.
Can include nonlinear M, and/or H,, as well as temporal correlations.

Contrary to KF, does not produce an explicit estimate of uncertainty on the
final estimate.

And, contrary to KF, there is no obvious cycling of estimation error from
one assimilation window to the next.
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First (and still now largely) implemented assuming dynamical model to be
exact (strong constraint variational assimilation, by opposition to weak
constraint variational assimilation, which takes model error into account)

(&) = (172) (x,? - EDTIPP1 ! (x? - &)
+(1/12) 2. ki - HEN R [y - H il
subjectto &, =M, 5 k=0,...,K-1

Minimization performed through iterative descent algorithm, each step of
which requires explicit knowledge of local gradient of objective function.
Computations made possible through use of the adjoint model of the
dynamical model. Local gradient is obtained by one forward integration of the
direct model over the assimilation window, followed by one backward

integration of the adjoint model (Penenko and Obraztsov, 1976, Le Dimet and
Talagrand, 1986)
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

35
Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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500hPa geopotential
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere
extratropics (bottom). showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point
on each curve 1s for the 12-month period August 2013—July 2014.
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Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.
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Is some form of Ensemble Variational Assimilation possible ?

Objective function

J(Eos &1 +-s Ek)
= (1/2) (x()b - §0)T [P ob]_l (xob - &)
+(1/2) 2o, k- HiEJ" R g - Hi Gl
+(1/2) i k[ St - MEAT O (&) - MUE,]

perturb the data x,”, y,, 0 (= x,,,- Mx) according to their error pdf,
and perform a variational assimilation on each set of perturbed data. In
linear and Gaussian case, that process is exactly Bayesian, in the sense

that it produces independent realizations of the pdf of the state of the
system, conditioned to the data.
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Ensemble of Data Assimilations (EDA)

Used at ECMWF and Météo-France for defining (in part)
background error covariance matrix P,’.
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EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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