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 After the well-known (and unsuccessful, but nevertheless very instructive) 
attempt by L. F. Richardson in 1922, Numerical Weather Prediction started for good 
in the late 40s, at the Institute for Advanced Study in Princeton, under the leadership 
of John von Neumann (in a group comprising, among others, people such as J. 
Charney, N. A. Phillips, R. Fjörtoff and J. Smagorinsky)   
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 Assimilation of observations, as it is known in meteorology and oceanography, 
originated from the need of defining initial conditions (ICs) for numerical weather 
prediction. That was considered at the start as a minor task, the ‘real’ thing being of 
course the forecast itself. Difficulties gradually arose 

  Need for defining ICs with appropriate spatial scales ⇒ ‘structure functions‘ (now incorporated in 
background error covariance matrices) 

  Need for defining ICs in approximate geostrophic balance ⇒ ‘initialization’ (now also incorporated in 
background error covariance matrices) 

  Realization that useful information was present in observations, particularly satellite observations, that were 
distributed over time ⇒ need to introduce the dynamical model in the process of definition of the ICs. Word 
assimilation was coined in 1967-68. 

  Satellite observations, in addition to being distributed continuously in time, are ‘indirect’ ⇒ need for some 
form of ‘inversion’ 

  Very significant increase of the number of observations to be processed ⇒ need for powerful and robust 
algorithms   



European Centre for Medium-Range Weather Forecasts (ECMWF, 2020)  
Around 10 million observations are used per 6 h period  
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 Proportion  of  resources  devoted  to  assimilation  in 
Numerical Weather Prediction has steadily increased over 
time.  At  ECMWF,  about  40%  of  resources  devoted  to 
operational chain is now devoted to assimilation.	
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 Originally, analysis of meteorological situation was perfomed by an experienced 
meteorologist on a chart. 

 When computers became available, they were used to perform the same task 
that was performed by hand. The main advantage was that the procedure was 
entirely automated, and could process rapidly a large amount of data. People spoke 
of objective analysis, by opposition to subjective analysis performed by individuals.  

 Principle : apply corrections to a first-guess field, by extrapolating differences 
between first guess and observations (Bergthórssen and Döös, 1955, Cressman,
1959) 



	

 	



	

 Observations yj , j = 1, …, p	



	

 Estimate of unknown quantity x looked for in the form	



	

 	

 xa = α + Σj βj yj	



α and the βj’s being determined so as to minimize the expected 	


quadratic estimation error E[(x-xa)2]	



Requires the a priori explicit knowledge of first-order (expectations) 	


and second-order (variances and covariances) statistical moments of all variables.	



Expectations of quantities to be estimated make up background (or first-guess) to be	


updated by observations.   	
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One method gained wide acceptance	



Optimal Interpolation (OI) (Gandin, 1963)	
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Each observation comes with its own influence function, or representer (its 
statistical covariance with variables to be estimated).	



	

 The  correction  performed  on  the  background  is  a  linear  combination  of 
all representers, with weights depending on values of observations, and on 
mutual covariances between observations.	





After N. Gustafsson 
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Schlatter’s (1975) multivariate covariances 

Specified as 
multivariate 2-point 
functions. 

Not easy to ensure 
that specified 
functions are 
actually valid 
covariances. 

Used in OI and 
related observation-
space methods. 



After A. Lorenc, MWR, 1981 
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In what is called in practice optimal interpolation, the background, usually 
denoted  xb,  is  a  recent  forecast  coming  from the  past.  The  associated 
covariance matrix that is required by the algorithm is usually taken as a 
climatological estimate (or an estimate varying with season, but not on the 
current estimate of the flow). It is denoted Pb (or simply B).	



Optimal  interpolation  has  been  abundantly  used  (and  is  still  in  many 
applications),  and  was  the  standard  method  of  assimilation  of 
meteorological observations for a number of years.	



In later years, the analysis xa has been obtained through minimization of a 
scalar objective function. It is then called 3DVar.   	
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‘Initialization’ 

Temperton and Williamson, 
ECMWF, 1979 



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	
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Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 15 



 Need  for  determining  the  temporal  evolution  of  the 
uncertainty on the state of the system is the major difficulty 
in  assimilation  of  meteorological  and  oceanographical 
observations	



	

 Two  classes  of  algorithms  have  been,  and  are  still, 
largely used for that purpose	



	

 -  Kalman Filter, especially in its Ensemble form	



	

 - Variational Assimilation	
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 Purpose of assimilation : reconstruct as accurately as possible the state 
of the atmospheric or oceanic flow, using all available appropriate 
information. The latter essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, 
and are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in 
practice in the form of a discretized, and necessarily approximate, 
dynamical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. 
Although they basically are necessary consequences of the physical laws which govern the 
flow, these properties can usefully be explicitly introduced in the assimilation process. 
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Both observations and ‘model’ are affected with some uncertainty ⇒ 
uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by 
probability distributions (don’t know too well why, but it works; see, 
e.g. Jaynes, 2007, Probability Theory: The Logic of Science, 
Cambridge University Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of 
the system, knowing everything we know (see Tarantola, A., 2005, 
Inverse Problem Theory and Methods for Model Parameter 
Estimation, SIAM). 18 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	



•  solid Earth geophysics	



•  plasma physics	



•  ‘nondestructive’ probing	



•  navigation (spacecraft, aircraft, ….)	



•  …	



	

 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 
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Difficulties specific to assimilation of meteorological observations :	



	

 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	



	

 - Non-trivial, actually chaotic, underlying dynamics	
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 If  errors  are  additive  and  Gaussian,  Optimal  Interpolation  achieves 
Bayesian estimation. 	



	

 Bayesian  estimation  is  actually  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	



•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (the  curse  of 
dimensionality).	



•  Probability distribution of errors on data very poorly known (model errors 
in particular).	
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One has to restrict oneself to a much more modest goal. Two	


approaches have been developed	



  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of  estimates that  are meant  to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	
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Kalman Filter  	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 
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 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1Hk Pb
k	



  Forecast step 
  xb

k+1 =  Mk xa
k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman  filter  (KF,  Kalman,  1960,  Jones,  1965,  Petersen,  1968,  Ghil  et  al., 
1981, …)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	



 In  case  observation  and  model  errors  εk  and  ηk  are  globally  Gaussian,  KF 
produces at any time k the (Gaussian) pdf for xk, conditioned by all data up to 
that time.        	
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innovation gain matrix 



 	


	

 Equation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 describes  temporal  evolution,  between  two  observation  instants,  of 
uncertainy  on  the  state  of  the  flow.  Much  too  costly  for  practical 
implementation.	
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Two solutions :	



•  Low-rank filters (Verlaan and Heemink, 1997, Pham et al., 1998, …)	


   Use low-rank covariance matrix, restricted to modes in state space on 

which  it  is  known,  or  at  least  assumed,  that  a  large  part  of  the 
uncertainty is concentrated.	



•  Ensemble filters	


 	

 Uncertainty  is  represented,  not  by  a  covariance  matrix,  but  by  an 

ensemble of point estimates in state space that are meant to sample the 
conditional  probability  distribution  for  the  state  of  the  system 
(dimension L  ≈ O(10-100)).	



	

 Ensemble  is  evolved in  time through the  full  model,  which eliminates 
any need for linear hypothesis as to the temporal evolution.	



	

 Ensemble  Kalman  Filter  (EnKF,  Evensen,  1994,  Houtekamer  and 
Mitchell, 1998, …)	
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How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	
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But problems	



- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in 
the fact that gain matrix Pb

 HT
 [HPbHT 

 + R]-1 is nonlinear wrt background error matrix Pb, 
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.	



-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	



-  In formula	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 	

 l = 1, …, L	

	



Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	
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⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang, MWR, 2008) 



Size of ensembles ?	



Must be fundamentally sufficient to prevent growth of errors 
in  neutral  and  unstable  modes  of  the  system.  Size  of 
ensembles must be at least as large as the number of those 
neutral and unstable modes (typically from a few tens to a 
few hundreds for large scale meteorological flow).	



Ensemble Kalman Filter exists in many variants and is used 
for many applications, both in operations and in research. 

30 



Variational Assimilation	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk’

T) = Rkδkk’	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk’

T) = Qkδkk’ k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	
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 Sequence of model states (ξ0, ξ1, ..., ξK) over observation period	


	

 	



	

 Then scalar objective function  	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

 measures misfit between sequence (ξ0, ξ1, ..., ξK) and data	


  
 Purpose  of  variational  assimilation  :  find  sequence  (ξ0,  ξ1,  ...,  ξK)  which 

minimizes J(ξ0, ξ1, ..., ξK) (4DVar)       

       
	

 	

 	



32 



	

 In  linear  case,  solves  the  same  problem  as  Kalman  Filter.  States  produced 
by both algorithms at  the end of the assimilation window are the same. In 
addition, if errors are Gaussian, algorithm, like KF, is Bayesian.	



	

 Propagates information both forward and backward in time. Is a smoother. 	


	

 	


	

 Can include nonlinear Mk and/or Hk, as well as temporal correlations.	



	

 Contrary  to  KF,  does  not  produce  an  explicit  estimate  of  uncertainty  on  the 
final estimate.	



	

 And,  contrary  to  KF,  there  is  no  obvious  cycling  of  estimation  error  from 
one assimilation window to the next.   	
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 First  (and  still  now  largely)  implemented  assuming  dynamical  model  to  be 
exact  (strong  constraint  variational  assimilation,  by  opposition  to  weak 
constraint variational assimilation, which takes model error into account)	



	

 J(ξ0)  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

 + (1/2) Σk=0,…,K [yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 subject to  ξk+1 = Mkξk   , k = 0, …, K-1 	



	

 Minimization  performed  through  iterative  descent  algorithm,  each  step  of 
which  requires  explicit  knowledge  of  local  gradient  of  objective  function. 
Computations  made  possible  through  use  of  the  adjoint  model  of  the 
dynamical model. Local gradient is obtained by one forward integration of the 
direct  model  over  the  assimilation  window,  followed  by  one  backward 
integration of the adjoint model (Penenko and Obraztsov, 1976, Le Dimet and 
Talagrand, 1986)	
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
35 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
36 



Persistence = 0 ; climatology = 50 at long range	
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 Buehner et al. (Mon. Wea. Rev., 2010)	


	

 	


	

 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	
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 Is some form of Ensemble Variational Assimilation possible ? 	


	

 	


	

 Objective function	



	

 J(ξ0, ξ1, ..., ξK)   
  = (1/2) (x0

b - ξ0)T [P0
b]-1 (x0

b - ξ0)	


	

 	

    + (1/2) Σk=0,…,K[yk - Hkξk]T Rk

-1 [yk - Hkξk] 
	

 	

    + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk

-1 [ξk+1 - Mkξk]  

	

 perturb the  data  x0
b,  yk,  0  (=  xk+1-  Mkxk)  according to  their  error  pdf, 

and perform a variational assimilation on each set of perturbed data. In 
linear and Gaussian case, that process is exactly Bayesian, in the sense 
that it produces independent realizations of the pdf of the state of the 
system, conditioned to the data.	
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 Ensemble of Data Assimilations (EDA) 	



	

 Used  at  ECMWF  and  Météo-France  for  defining  (in  part) 
background error covariance matrix P0

b.     	
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